Highly stable plasminogen activator inhibitor type one (VLHL PAI-1) protects fibrin clots from tissue plasminogen activator-mediated fibrinolysis.
نویسندگان
چکیده
Plasminogen activator inhibitor-1 (PAI-1) is the major specific inhibitor of tissue-type plasminogen activator (tPA) which mediates fibrin clot lysis through activation of plasminogen. Wild-type-PAI-1 (wPAI-1) is rapidly converted to the latent form (half-life of approximately 2 h) and loses its ability to inhibit tPA. We developed a very long half-life PAI-1 (VLHL PAI-1), a recombinant protein with a half-life >700 h compared with wPAI-1. In this study, VLHL PAI-1 was assessed for its ability to inhibit clot lysis in vitro. Clot formation was initiated in normal plasma supplemented with tPA by the addition of either tissue factor or human recombinant FVIIa. Clot lysis time, monitored turbidimetrically in a microtiter plate reader, was determined at various concentrations of wPAI-1 and VLHL PAI-1. Both wPAI-1 and VLHL PAI-1 caused a significant increase in clot lysis time, although the latter was somewhat less effective at lower concentrations. The VLHL PAI-1, but not wPAI-1, maintained its anti-fibrinolytic activity after preincubation overnight at 37 degrees. These studies demonstrate that VLHL PAI-1 is an effective inhibitor of fibrin clot degradation. Due to the high stability of VLHL PAI-1 compared with wPAI-1, this novel inhibitor of tPA-mediated fibrinolysis may have therapeutic applications for treating surgical and trauma patients when used directly or in conjunction with the procoagulant recombinant FVIIa.
منابع مشابه
Type 1 plasminogen activator inhibitor binds to fibrin via vitronectin.
Type 1 plasminogen activator inhibitor (PAI-1), the primary inhibitor of tissue-type plasminogen activator (t-PA), circulates as a complex with the abundant plasma glycoprotein, vitronectin. This interaction stabilizes the inhibitor in its active conformation In this report, the effects of vitronectin on the interactions of PAI-1 with fibrin clots were studied. Confocal microscopic imaging of p...
متن کاملPlasminogen activator inhibitor-1 secretion of endothelial cells increases fibrinolytic resistance of an in vitro fibrin clot: evidence for a key role of endothelial cells in thrombolytic resistance.
Time-dependent thrombolytic resistance is a critical problem in thrombolytic therapy for acute myocardial infarction. Platelets have been regarded as the main source of plasminogen activator inhibitor-1 (PAI-1) found in occlusive platelet-rich clots. However, endothelial cells are also known to influence the fibrinolytic capacity of blood vessels, but their ability to actively mediate time-depe...
متن کاملSystemic or topical application of plasminogen activator inhibitor with extended half-life (VLHL PAI-1) reduces bleeding time and total blood loss.
Civilian and military trauma patients consist of a disproportional number of young people, causing a considerable burden to society in terms of disability and premature death. Hemorrhage is a leading cause of mortality in this group of patients and the novel methods to reduce bleeding would be welcomed. Management of bleeding following major trauma includes hemostatic agents that offer effectiv...
متن کاملAccelerated thrombus lysis in the blood of plasminogen activator inhibitor deficient mice is inhibited by PAI-1 with a very long half-life.
Patients with defective plasminogen activator inhibitor protein (PAI-1) or with PAI-1 deficiency can experience hemorrhage as a result of a hyperfibrinolysis. In these patients, a normal thrombus forms, but endogenous lysis is unchecked as tissue plasminogen activator is unopposed. Treatment includes anti-fibrinolytic agents, including oral tranexamic acid. Another treatment option is the admin...
متن کاملPlasminogen activator inhibitor-1 suppresses endogenous fibrinolysis in a canine model of pulmonary embolism.
BACKGROUND Plasminogen activator inhibitor-1 (PAI-1), the specific, fast-acting inhibitor of tissue-type plasminogen activator (t-PA), binds to fibrin and has been found in high concentrations within arterial thrombi. These findings suggest that the localization of PAI-1 to a thrombus protects that same thrombus from fibrinolysis. In this study, clot-bound PAI-1 was assessed for its ability to ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- International journal of molecular medicine
دوره 20 5 شماره
صفحات -
تاریخ انتشار 2007